The shadow of the supermassive black hole in M87

Alejandro Cruz Osorio Institute for Theoretical Physics, Goethe University Frankfurt, Germany

Growing Black Holes: Accretion and Mergers, Kathmandu, Nepal, May 15-20, 2022

Table of Contents

- - recap of total intensity map
 - focus on polarization map
- Theoretical interpretation of shadow of M87 from polarization results
- Jet modeling
- Present and Future of EHT
- Summary

Event Horizon Telescope

Event Horizon Telescope Collaboration & shadow image of M87*

Relativistic Jets

- Outflow of highly collimated plasma
 - Microquasars, Active Galactic Nuclei, Gamma-Ray Bursts, Jet velocity ~c
 - Generic systems: Compact object (Neutron Star, Black Hole) + accretion flows
 - Jets are common in the universe
- Key Issues of Relativistic Jets
 - Acceleration & Collimation
 - Propagation & Stability
 - Origin of high energy particle (particle acceleration)

Event Horizon Telescope

Black Hole Photon Ring

Johnson et al. (2019)

Black Holes with the Largest Angular Sizes

Source	BH Mass (M _{solar})	Distance (Mpc)	1 Rg (µas)	
Sgr A*	4 x 10 ⁶	0,008	10	M 87 (NGC 4486) Ultra-high-sensitivity HDTV I.I. color camera (NHK) Exp. 40 sec. (10 frames coadded) January 16, 1999 Subaru Telescope, National Astronomical Observatory of Japan, all rights reserved Copyright © 1999, National Astronomical Observatory of Japan, all rights reserved
M87	3.3 - 6.2 x 10 ⁹	16,8	3.6 - 7.3	
M104	1 x 10 ⁹	10	2	
Cen A	5 x 10 ⁷	4	0,25	

Design for Event Horizon Telescope

Rayleigh criterion: $\theta = \lambda/D$ Required angular resolution: $\theta \approx 20 \ \mu as$ λ : observational wavelength D: diameter of telescope

10cm	1m	10m	
1x10 ⁶	1x10 ⁷	1x10 ⁸	

Earth diameter ~ 1.2 x 10⁴ km

Design for Event Horizon Telescope

10,000 km?

Complex vis

Event Horizon Telescope

- How do you build a telescope with diameter of
- \Rightarrow one telescope is impossible.
- We combine multiple telescopes by using Very Long Baseline Interferometry (VLBI)
- VLBI is a technique to connect with multiple radio telescopes to create one big radio telescope (diameter of telescope = longest baseline of telescopes)
- Interferometry measures the brightness distribution of a source in Fourier space

sibility:
$$V_{ij}(u,v) = \int \int dx dy I(x,y) e^{-2\pi i (ux+vy)}$$

Create a Earth size virtual radio telescope by using VLBI

 $D \sim 10,000 \text{ km} \Rightarrow \lambda/D \sim 25 \text{ }\mu\text{as}$

Sgr A* South Pole Telescope (SPT) EHT 50µas Credit: H. Shiokawa **M87** EHT Country : Antarctica 40µas Coordinates : 90°S 0°E Diameter of telescope : $10\,\mathrm{m}$

Credit: M. Moscibrodzka

Calibrated data sets (before imaging)

Fourier domain

Event Horizon Telescope

EHT 2017 M87 data look consistent with an asymmetric ring ("crescent")

Event Horizon Telescope & Black Hole Shadow

- In April 2017, EHT has observed asymmetric ring morphology of the central compact radio source in M87.
- Consistent with 4 days.

Event Horizon Telescope

Interpreted as lensed emission surrounding the spinning Kerr black hole shadow

Averaged Polarimetric Images

two days

Image-Averaged Quantities

 $\int_{0}^{3 \times 2\pi} P(\rho,\varphi) e^{-2i\varphi} \rho d\varphi d\rho$ amplitude & phase $I_{\mathrm{ring}} \stackrel{\circ}{\rho_{\mathrm{min}}} \tilde{0}$ **Event Horizon Telescope**

Use these values for model constraint

13

Azimuthal mode of Polarized Structure

Expand a linearly polarized image from multipole series in polar coordinates (ρ, φ).

$$\beta_2 = \frac{1}{I_{\text{ring}}} \int_{\rho_{\min}}^{\rho_{\max}} \int_{0}^{2\pi} P(\rho, \varphi) e^{-2i\varphi} \rho d\varphi d\rho$$

 β_2 value (m=2 mode) reflects electric vector position angles (EVPA) pattern.

Synthetic modeling in simulations

GRMHD:

- spacetime
- Disk evolution
- Magnetic field
- Jet launching & propagation

Observations:

- Data comparison
- Model prediction

GRRT:

- Mass & distance
- microphysics
- Emission model

Theoretical prediction:

- Synthetic data (VLBI observation)
- Image generation

• Black Hole spin $-1 < a^* < 1$

Accretion type (SANE or MAD depends on magnetic flux)

SANE: Standard and Normal Evolution MAD: Magnetically Arrested Disk

GRRT

GRMHD

- Black Hole mass
- Accretion rate

3 GRRT codes (BHOSS, ipole, Raptor)

- Radiation microphysics (thermal synchrotron, eDF: R-beta model)
- Orientation towards the observer (inclination and jet position angle)

Prior knowledge from observations

- BH mass: 6.2e9 or 3.5e9 Msun
- Inclination angle: 17 or 163 deg with jet position angle 288 deg

Event Horizon Telescope

What about the parameter space?

Simulation Library >15 GRMHD runs

4 GRMHD codes (BHAC, iharm, KORAL, H-AMR)

Image Library >60,000 images

 $\frac{T_i}{T_e} = R_{\text{high}} \frac{\beta_p^2}{1 + \beta_p^2} + \frac{1}{1 + \beta_p^2}$ Electrons colder at high plasma beta (disk), warmer at low plasma beta (jet)

- Torus in hydrodynamical equilibrium with poloidal B-field
- Monitor accretion rate and evolve until quasi-steady state

Kerr black hole with a=0.94, SANE model

GRMHD Simulations

• Model the accretion flow radiatively inefficient accretion flow (RIAF) onto a black hole

Credit: L.Weih, L. Rezzolla, Frankfurt BHCam team

GRRT calculation

- Compute the emission structure: BHOSS (Younsi et al. 2021)
- (eDF) & emission process

- \Rightarrow thermal synchrotron
- \Rightarrow electron temp., Θ_e unknown

• Scale to source: black hole mass, distance, accretion rate, electron distribution function

2) connect to GRMHD $\frac{T_i}{T_e} = R_{\text{high}} \frac{\beta_p^2}{1 + \beta_n^2} + \frac{1}{1 + \beta_n^2}$

3) get geodesics + radiation transfer

\Rightarrow emission+absorp. coeffs.

GRRT Image at 230 GHz for M87

GRRT

- MAD, a=+0.5
- i=163 deg
- each frame corresponds to 1M (~0.35 day)

GRRT+blurred

Library of polarized black hole shadow images for M87 (72k images)

(EHT Paper VIII)

Magnetic Field Configuration

- Consider simple equatorial plane emission
- Different magnetic field configuration (toroidal, radial, and vertical)
- Vertical (poloidal) magnetic field can produce similar azimuthal EVPA pattern observed by EHT

b)

c)

 \odot

Scoring Results

 \mathcal{A}

Scoring Results

- Scoring results prefer MAD than SANE.
- SANE & MAD a=0 model would be ruled out from jet power constraint (same as Paper V)

Event Horizon Telescope

Stellar Mass: 6.2 x 10⁹ M_{sun} (Gebhardt et al. 2011)

Black Hole: 4.84-5.2 Rg

Diameter of image ~ 39-45 Rg Crecent in the ring

Linear polarisation \checkmark Spin of BH ~ 0.5 \checkmark B fields ~ 1-20 G Electron temperature Te ~ (1-10)X 10⁹ Kelvins EVPA pattern is made by vertical magnetic field

6.5 Billion Solar Mass Black Hole at distance of 16.8 Mpc

Image Credit: The EHT Multi-wavelength Science Working Group; the EHT Collaboration; ALMA (ESO/NAOJ/NRAO); the EVN; the EAVN Collaboration; VLBA (NRAO); the GMVA; the Hubble Space Telescope; the Neil Gehrels Swift Observatory; the Chandra X-ray Observatory; the Nuclear Spectroscopic Telescope Array; the Fermi-LAT Collaboration; the H.E.S.S collaboration; the MAGIC collaboration; the VERITAS collaboration; NASA and ESA. Composition by J. C. Algaba

	Chandra X-rays ∇	NuSTAR V		Fermi-LAT ▽	HESS+MAGIC+VERITAS ∇	
10 ⁻⁸	10 ⁻¹⁰	10 ⁻¹²	10 ⁻¹⁴	10 ⁻¹⁶	10 ⁻¹⁸	10-2
aviolet	X-Rays	γ-Rays	Very High Energy γ-rays			
10 ¹⁶	10 ¹⁸	10 ²⁰	10 ²²	10 ²⁴	10 ²⁶	1028

SED of M87 in EHT MWL Observations

 10^{27}

M87 multi-frequency observations

Compare with 86GHz Global Millimetre VLBI observations and board band SED

VLBI @ 86GHz (jet structure)

- wide opening angle
- edge brightening

GMVA: Kim et al. 2018 Spectrum: Kim et al. 2018, Prietro et al. 2016, Doeleman et al. 2012, Akiyama et al. 2015

- flat spectrum ($v < 10^{12}$ Hz)
- power-law decay spectrum ($v > 10^{12}$ Hz)

kappa distribution function

$$\frac{dn_{\rm e}}{d\gamma} = N\gamma\sqrt{\gamma^2 - 1}\left(1 + \frac{\gamma - 1}{\kappa w}\right)^{-(\kappa+1)} + {\rm non-}$$

- thermal core at low values of the Lorentz factor, asymptotically • turns into a power-law
- power-law index, $p = \kappa 1$ \bullet
- In the limit of $\kappa \rightarrow \infty$, the κ -distribution becomes the Maxwell- \bullet Jüttner DF
- $\kappa(\beta,\sigma)$ + subgrid model from PIC simulation Energy content

$$w = \frac{\kappa - 3}{\kappa} \Theta_{\rm e} + \tilde{\epsilon} \frac{\kappa - 3}{6\kappa} \frac{m_{\rm p}}{m_{\rm e}} \sigma.$$

$$\frac{T_i}{T_e} = R_{\text{high}} \frac{1}{1}$$

→ connect to GRMHD

M87 Jet Modeling at 86GHz

- 3D GRMHD simulations of MAD accretion flows
 + GRRT calculations (thermal + non-thermal eDF)
- MAD (a=0.94) fits SED & jet morphology at 86GHz $\log_{10} S \left[\text{Jy/pixel} \right]$ -4.8 -5.4 -7.2-6.6 -6.0 -4.2 $a_{\star}=0.50$ $a_{\star}=0.9374$ 86GHz Image $a_{\star}=0.50$ $a_{\star} = 0.9374$ GMVA

Event Horizon Telescope

 $1 \mathrm{mas}$

Cruz-Osorio, Fromm, YM et al. (21)

 $1 \mathrm{mas}$

next for Event Horizon Telescope

Phase I: 2019-2023 (Array Design Phase) Phase II: 2023- (Constructions of several new sites)

Event Horizon Telescope

- EHT has see a black hole shadow in M87 which is signature of light bending in Kerr BH metric and absorption by the event horizon
- In new polarized image, high polarised region follows bright ring structure with helical EVPA pattern
- From model comparison, MAD accretion model is favoured than SANE
- Near the BH horizon, poloidal magnetic field is dominated
- New EHT observations will provide the jet formation site and connection to largescale jets in M87
- Upcoming: Galactic center (Sgr A*) images

Event Horizon Telescope

Summary

Thank you for listening ...

