

Extended radio emission in narrow-line Seyfert 1 galaxies

Järvelä, Dahale, Crepaldi, Berton & Antonucci 2022, A&A, 658:12

Emilia Järvelä European Space Agency European Space Astronomy Centre Villanueva de la Cañada, Spain

astrojarvela@gmail.com

May 19, 2022 Growing black holes: accretion and mergers Kathmandu, Nepal

Narrow-line Seyfert 1 galaxies

a subclass of population A

Narrow-line Seyfert 1 galaxies

- Low mass black hole (< 10⁸ M_{sun}) accreting at high Eddington ratio (0.1 to super-Eddington)
- Strong soft X-ray excess, high-amplitude variability at short time-scales
- Compact radio morphology, majority not even detected in radio (yet)
 Hosted by barred spiral galaxies

Relativistic jets in NLS1s!

...even if their black hole mass, host galaxy type, and radio morphology are all "wrong"

PMN J0948+0022

Crisis of the jet paradigm

- Discovery of relativistic jets in NLS1s contradicts the conventional jet paradigm
- What are the necessary conditions to launch a jet?
- How is the jet triggered and its activity maintained?

Crisis of the jet paradigm

- Discovery of relativistic jets in NLS1s contradicts the conventional jet paradigm
- What are the necessary conditions to launch a jet?
 How is the jet triggered and its activity maintained?

...and the confusing NLS1s

NLS1s are very diverse as a class

→ Most seem totally radio-silent, but a fraction host relativistic jets
→ Different subclasses? Intraclass evolution?

What are the parent populations?

Death of radio-loudness

- Vague parameter, arbitrarily set threshold
- Not suitable to be used to classify variable sources,
 - with varying contribution from the host galaxy
- Misses several groups of sources:
 → absorbed jets
 - \rightarrow low-power / misaligned jets
- Classification should be based on physical properties

Death of radio-loudness

Vague parameter, arbitrarily set threshold

...but how?

- Not suitable to be used to classify variable sources,
 - with varying contribution from the host galaxy
- Misses several groups of sources:
 → absorbed jets
 - \rightarrow low-power / misaligned jets
- Classification should be based on physical properties

Low-frequency radio emission

- Complicated for AGN not dominated by the jets
 NLS1s are an ideal laboratory since they show a diverse ensemble of properties
 - → jets with varying power, from weak to relativistic
 - → outflows induced by winds / jets
 - \rightarrow shocks due to AGN-ISM -interaction $\frac{1}{2}$
 - \rightarrow star formation activity in the host

Pan-STARRS

Sample and data

 Original sample from Berton+2018 \rightarrow sources with extended radio emission (N=44) → includes a little bit of everything, except radio-silent sources Data from Karl G. Jansky Very Large Array in A-configuration \rightarrow central frequency 5.2 GHz, bandwidth 2 GHz, resolution 0.5 arcsec, rms < 10 μ Jy / beam

Aims and methods

• Aim was to study the origin(s) of the radio emission using spectral index information Cleaning with CASA using the mt-mfs algorithm → radio maps + tapered maps \rightarrow allows simultaneous fitting in frequency and in space, resulting in spatially resolved spectral index maps Additional near-infrared data to estimate radio emission from star formation

based on the jet/counter-jet flux density ratio the inclination is about 45 deg

based on the jet/counter-jet flux density ratio the inclination is about 45 deg

J1038+4227

J1038+4227

J1038+4227

- One third AGN-dominated
 - → jets at large and small scales, large-scale outflows
 → five new CSS candidates

One third AGN-dominated

 → jets at large and small scales, large-scale outflows
 → five new CSS candidates

 One third host-dominated

 → SF activity is the predominant source of radio

One third AGN-dominated
→ jets at large and small scales, large-scale outflows
→ five new CSS candidates
One third host-dominated
→ SF activity is the predominant source of radio
One third composite
→ show AGN and SF properties

One third AGN-dominated

- \rightarrow jets at large and small scales, large-scale outflows
- → five new CSS candidates
- One third host-dominated
 - \rightarrow SF activity is the predominant source of radio
- One third composite

→ show AGN and SF properties

 In addition: one BLS1, the puzzling "halo" object, one candidate NLS1 with absorbed jets

Take-home messages i.e. issues and how to fix them

Take-home messages i.e. issues and how to fix some of them

Take-home messages i.e. issues and how to fix some of them

- NLS1 population is very diverse
 - \rightarrow no assumptions based on the classification only
 - \rightarrow we should discuss the classification criteria in general.
- Do not trust simple proxies (with NLS1s)
 - \rightarrow we need more reliable AGN and SF activity indicators

Take-home messages i.e. issues and how to fix some of them

- NLS1 population is very diverse
 - \rightarrow no assumptions based on the classification only
 - \rightarrow we should discuss the classification criteria in general
- Do not trust simple proxies (with NLS1s)
 - \rightarrow we need more reliable AGN and SF activity indicators

...and future work

- high-resolution radio imaging
- confirm the optical classification
- starting to characterise the whole population, including the radio-silent sources

Thanks!