

Multi-wavelength view of large-scale galactic outflows

Ivan Katkov

New York University Abu Dhabi, United Arab Emirates

Sternberg Astronomical Institute, Moscow

Joseph Gelfand (NYUAD), Aisha Al Yazeedi (NYUAD), Jwaher Alnaqbi (NYUAD), Dominika Wylezalek (University of Heidelberg - ARI)

> Growing Black Holes: Accretion & Mergers Kathmandu, May 19, 2022

Multi-wavelength view of large-scale galactic AGN-driven outflows

New York University Abu Dhabi, United Arab Emirates

Sternberg Astronomical Institute, Moscow

Joseph Gelfand (NYUAD), Aisha Al Yazeedi (NYUAD), Jwaher Alnaqbi (NYUAD), Dominika Wylezalek (University of Heidelberg - ARI)

> Growing Black Holes: Accretion & Mergers Kathmandu, May 19, 2022

Intro

• Material accreting onto black holes release a lot of energy

Radiative-mode AGN

- This energy (whether radiation or relativistic jets) has a significant impact on their surroundings. In the case of a SMBH, the surroundings are the entire galaxy.
- The resultant outflow driven by this energy plays an important role in galaxy evolution

Mechanical jet-mode AGN

- What are the properties of these outflows?
- How are these properties related to injection of energy by the central SMBH?
- Diversity in observed "AGN feedback" among galaxies.

Intro: multi-phase and multi-wavelength outflow nature

Phase	Ionized warm gas	Neutral atomic gas	Molecular gas
Temperature, K	~10,000	100 - 1,000	10-100
Density, cm ⁻³	100 - 10,000	1-100	>1,000
How to measure?	- Optical emission lines	 Na I D 5900A feature in optical spectrum HI 21cm, [CII] 	- Sub-mm CO lines - Infrared H ₂ lines

V_{OUTFLOW}~100-1000 km/s

Intro: multi-phase and multi-wavelength outflow nature

SDSS MaNGA IFU survey

- ~10k targets
- Ionized gas state
- Host galaxy properties

Dedicated radio observations

- JVLA Jansky Very Large Array
- VLBA Very Long Baseline Array

Pre-selection criteria

- MaNGA DR17, ~10k objects
- Detection in previous radio surveys (FIRST/VLASS)
- Detectable emission lines
 - Gauss. peak / err. > 5 for Hbeta and [OIII]
- non-SF ionization based on BPT-NII, BPT-SII diagrams

Pre-selection criteria

- MaNGA DR17, ~10k objects
- Detection in previous radio surveys (FIRST/VLASS)
- Detectable emission lines
 - Gauss. peak / err. > 5 for Hbeta and [OIII]
- non-SF ionization based on BPT-NII, BPT-SII diagrams

Inspection

- Visual inspection of 254 pre-selected objects and detection clear outflow cases
- Web-based interactive MaNGA Visualiser
- Avoid projected merger systems
- Parent list of 40 targets for VLBA observations

Pre-selection criteria

- MaNGA DR17, ~10k objects
- Detection in previous radio surveys (FIRST/VLASS)
- Detectable emission lines
 - Gauss. peak / err. > 5 for Hbeta and [OIII]
- non-SF ionization based on BPT-NII, BPT-SII diagrams

Inspection

- Visual inspection of 254 pre-selected objects and detection clear outflow cases
- Web-based interactive MaNGA Visualiser
- Avoid projected merger systems
- Parent list of 40 targets for VLBA observations

Radio follow-up observations

- JVLA kpc properties of outflow. Angular resolution comparable to MaNGA – directly compare optical / radio morphologies.
- VLBA radio emission from innermost pc around SMBH.
 Detection vs. Non-detection => different AGN modes
- Have multiple bands in each to get spectral information.

https://manga.voxastro.org

Image credit: NRAO/AUI

 $M_{STAR} \sim 7e7 - 2e11 M_{SUN}$

- 21 targets followed up with VLBA
 - 10 detections in C-band (4-8 GHz)
 - L-band (1-2 GHz) is still under processing...
- JVLA: 12 out 21

 $M_{STAR} \sim 7e7 - 2e11 M_{SUN}$

- 21 targets followed up with VLBA
 - 10 detections in C-band (4-8 GHz)
 - L-band (1-2 GHz) is still under processing...
- JVLA: 12 out 21

- Bulk of detections in Green Valley
- Green Valley home of HERAGN Smolic 2016

- What is the origin of the VLBA detection in these

 are their radio properties different / similar
 than red sequence detections?
- Are there optical outflows difference between these VLBA detections and non-detections in same part of CMD.

- Bulk of detections in Green Valley
- Green Valley home of HERAGN Smolic 2016

- What is the origin of the VLBA detection in these

 are their radio properties different / similar
 than red sequence detections?
- Are there optical outflows difference between these VLBA detections and non-detections in same part of CMD.

General view and stellar kinematics

General view and stellar kinematics

Outflow identification (MaNGA)

- Two component Gaussian model
 - Ambiguous solutions 😕

Outflow identification (MaNGA)

- Two component Gaussian model
 - Ambiguous solutions 😕

Our approach

• BIC_{1GAUS} – BIC_{2GAUS} map to deintify

$$\mathrm{BIC} = N_{\mathrm{data}} \ln \frac{\chi^2}{N_{\mathrm{data}}} + N_{\mathrm{vars}} \ln N_{\mathrm{data}}$$

Outflow identification (MaNGA)

- Two component Gaussian model
 - Ambiguous solutions 😕

Our approach

- BIC_{1GAUS} BIC_{2GAUS} map to deintify BIC = $N_{\text{data}} \ln \frac{\chi^2}{N_{\text{data}}} + N_{\text{vars}} \ln N_{\text{data}}$
- Simultaneous fitting all spaxels in (binned) spectral cube
- Simple model for rotation of "main" component

$$V_{\phi}(R) = V_0 \left(anh \pi rac{R}{R_0} + c rac{R}{R_0}
ight) V_{
m LOS}(x,y) = V_{
m sys} + V_{\phi}(x,y) rac{\cos \phi \sin i}{g}$$

- All lines are fitted simulteneousely
- Iterative approach

Outflow identification (MaNGA)

- Two component Gaussian model
 - Ambiguous solutions 🤔

Our approach

- BIC_{1GAUS} BIC_{2GAUS} map to deintify BIC = $N_{\text{data}} \ln \frac{\chi^2}{N_{\text{data}}} + N_{\text{vars}} \ln N_{\text{data}}$
- Simultaneous fitting all spaxels in (binned) spectral cube
- Simple model for rotation of "main" compo

$$V_{\phi}(R) = V_0 \left(\tanh \pi \frac{R}{R_0} + c \frac{R}{R_0} \right) V_{\text{LOS}}(x, y) = V_{\text{sys}} + V_{\phi}(x, y) \frac{\cos x}{2}$$

- All lines are fitted simulteneousely
- Iterative approach

Outflow identification (GMOS-IFU)

- Wylezalek et al. 2017
- No need to apply two-component model
- Spatial resolution 0.8-0.9 arcsec
 - WaNGA: effectively ~2.3-2.5 arcsec
 - o Spatial resolution matters

Outflow and AGN parameters

- Eddington ratio <1%
- Low-Eddington accretion may be more efficient in producing outflows than their high-Eddington counterparts

Outflow and AGN parameters

- LERAGN in a HERAGN host
- AGN activity in Blob is currently driving the transition of the host galaxy from HERAGN-like to LERAGN-like properties?

	HERAGN	LERAGN
Other names	HERG Cold-mode AGN Radiative-AGN Quasar-mode High SMBH accretors Thin-disk	LERG Hot-mode AGN Jet-mode AGN Radio-mode Low SMBH accretors Thick-disk, ADAF
Radio luminosity	High (L _{20cm} ≥10 ²⁶ W/Hz)	Lower (L _{20cm} ≤10 ²⁶ W/Hz)
Source of radio emission	SF+AGN	AGN
Optical color	Green	Red
Stellar mass	Lower than LERAGN	Highest (≥5×10¹ºM _☉)
Gas mass	Higher (3×10³M _☉)	Low (<4.3×10 ⁷ M _☉)
BH mass	Lower than LERAGN	Highest (~10⁰M _⊙)
BH accretion rate	~Eddington	sub-Eddington
BH accretion mode	Radiatively efficient	Radiatively inefficient

Smolcic 2016

Outflow / Host galaxy interaction

MaNGA

Outflow / Host galaxy interaction

Future (ongoing) steps

- Need coherent sample and metrics
- Two component kinematical deconvolution
 - Simplified physically motivated based on [OIII] line only

3.9 mas

5.2 p

• Outflow demographics

Visualization tools

https://manga.voxastro.org

- MaNGA Visualiser (<u>https://manga.voxastro.org</u>)
 - First prototype
 - Only MaNGA DR17
- IFU Visualiser
 - Early development stage
 - o MaNGA, SAMI, Califa, Atlas3D
 - Advanced tables functionality
 - Value Added catalogs as a linked tables
 - SQL-like query syntax
 - Cone Search Query and CDS Name resolver Sesame

https://ifu.voxastro.org

Summary

 Studying large scale outflows using combination of radio (VLA + VLBA) and optical IFU spectroscopy

- "Blob" galaxy (MaNGA 1-66919) is a nice example of detailed investigation galaxies hosting kpc-scale outflows
 - Low-Eddington <1%</p>
 - Bi-conical outflow > 100-200 km/s
 - Relativistic electrons and ionized gas have comparable energy budget (10⁵⁴ – 10⁵⁵ erg)
 - Positive and negative feedback in the host

- Fast interactive online IFU visualization is helpful
 - https://manga.voxastro.org
 - https://ifu.voxastro.org

Summary

Thank you for attention!

 Studying large scale outflows using combination of radio (VLA + VLBA) and optical IFU spectroscopy

- "Blob" galaxy (MaNGA 1-66919) is a nice example of detailed investigation galaxies hosting kpc-scale outflows
 - Low-Eddington <1%</p>
 - Bi-conical outflow > 100-200 km/s
 - Relativistic electrons and ionized gas have comparable energy budget (10⁵⁴ – 10⁵⁵ erg)
 - Positive and negative feedback in the host

- Fast interactive online IFU visualization is helpful
 - https://manga.voxastro.org
 - https://ifu.voxastro.org

