AGN powered by intermediate-mass black holes: the parent sample of optically selected candidates from 1 million SDSS spectra

Ivan Kuzmin

(Sternberg Astronomical Institute, Moscow State University)

Igor Chilingarian, Vladimir Goradzhanov, Victoria Toptun, Mariia Demianenko, Kirill Grishin, Ivan Katkov, Ivan Yuzhakov, Ivan Zolotukhin, Dmitrii Matveev

Subsequent talks from our team about IMBHs at this conference

Thursday, May 19

- 12:00 Victoria Toptun: X-ray follow-up and archival data: IMBH confirmation
- **12:15 Kirill Grishin**: Structural properties and environment of IMBH hosts
- 14:00 Vladimir Goradzhanov: Optical spectroscopic follow-up: MBH-sigma relation
- 14:15 Mariia Demianenko: Optical variability of IMBHs

Friday, May 20

11:05 - Igor Chilingarian: How do SMBHs grow in the low-mass regime?

The formation of supermassive black holes in galaxy centers

What are the SMBHs seeds? One (or at the same time?) of three:

- super-Eddington accretion on stellar mass seeds (Pop-III star remnants)?
- direct collapse of massive gas clouds (10⁵ M_{sun}) in the early Universe?
- merging of stellar mass seeds in clusters + subsequent accretion?
- merging IMBH?

Estimating the mass of a central black hole in an AGN is not an easy task. Especially, from single epoch observations.

An example of a non-parametric fit of an emission spectrum an AGN

Allowed emission lines broad (par) + narrow (non-par) Hα/β/... 6563/4861 Forbidden emission lines: narrow (non-parametric) [OIII] 4959/5007, [N II] λ6583, [N II] λ6548, [S II] 6717/6731

Baldwin-Phillips-Terlevich (BPT) diagnostic [OIII]/[NII] and [OIII]/[SII]

to reject objects where the ionization was induced by star formation, because such objects often have broad Balmer lines originating from transient stellar events (core-collapse SNe) rather than from an AGN.

Selection of candidates: a set of criteria applied to the data

- telluric lines do not cover principal emission |(1+z)*5007.0-5577.0|<4Å lines (H α H β [OIII] [NII])
- Flux in BLR and NLR is accurate $(F F_{err} * \sqrt{\chi^2}) * \sqrt{\frac{\chi^2}{F + F_{err} * \sqrt{\chi^2}}} < 0.5$
- \bullet BLR is significantly broader than NLR $\sqrt{rac{\sigma_{BLR}^2 \sigma_{NLR}^2}{\sigma_{NLR}^2}} > 2.0$
- Adding a BLR yields a statistically significant improvement of the fitting quality $\chi^2_{noBLR} \chi^2_{withBLR} > 20$
- Ratio between M_{BH} and its uncertainty $M/M_{err} > 3$
- Verification with the BPT: AGN or transitional region
- Virial M_{BH} < 200,000 M_{sun}

Initial data: fiber spectra from Sloan Digital Sky Surveys

SDSS DR7 - 938,487

eBOSS SDSS DR15 - 154,764 (subset: 0 < z < 0.2 and 0.2<z<0.6 with spectrum SNR>15)

We found 26 new IMBH candidates (6 without BPT and 20 with BPT) from the SDSS DR15 eBOSS sample by processing 154,764 1d spectra at z<0.2 (all data is now in RCSEDv2)

The final sample

LWSMBH: "light-weight" SMBH

IMBH: intermediate-mass black hole

1928 galaxies in the sample

- 1623 LWSMBH $(M_{BH} < 10^6 M_{sun})$
- 305 IMBH $(M_{BH} < 2*10^5 M_{sun})$

Among this sample:

- X-ray data: 174 objects
- optical follow-up spectroscopy: 72 objects
- optical variability: 500+ targets

Thank you for your attention

Subsequent talks from our team about IMBHs at this conference

Thursday, May 19

- 12:00 Victoria Toptun: X-ray follow-up and archival data: IMBH confirmation
- **12:15 Kirill Grishin**: Structural properties and environment of IMBH hosts
- 14:00 Vladimir Goradzhanov: Optical spectroscopic follow-up: MBH-sigma relation
- 14:15 Mariia Demianenko: Optical variability of IMBHs

Friday, May 20

11:05 - Igor Chilingarian: How do SMBHs grow in the low-mass regime?