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abstract

The physics of relativistic jets:

(O) introduction,

(1) launching and powering,

(2) acceleration and collimation,
(3) stability,

(4) energy dissipation,

(5) particle acceleration,

(6) radiative processes,

(7) plasma composition,

(8) origin of maitter.
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relativistic jets in active galaxies

e tightly collimated outflows at apparently
superluminal speeds

* true speeds subluminal but highly
relativistic: I = 1/\/1 —v?/c? ~ 20

* huge luminosity boost
L, ~T*L ~ 10°L. atsmall viewing
angles 0. S 1/1" — blazars

ny

* broad-band non-thermal electromagnetic
spectra - efficient energy dissipation and
particle acceleration




(1) launching and powering



rotating force-free magnetosphere

Blandford (1976)

Blandford & Znajek (1977)

Force-free electrodynamics:
w=pc’4+u+P - 0;
o = B?/4nw — oo;

J—f(ff)
eE+(]><B)/c=0

Rotating magnetosphere with poloidal magnetic
flelds drives outflowing Poynting flux

S = (c/4m)(E X B).

This mechanism is qualitatively independent of the
central object, on which the poloidal fields exert a
torque.

In the case of spinning (Kerr) black holes, poloidal
field lines pass through the ergosphere, extracting
the rotational energy of the black hole.

The Blandford-Znajek formula for jet power:
Py, o (a/M)* @, where a is the BH spin and

Dy is the BH magnetic flux.



iet power can exceed accretion power

)/ l e GRMHD
- simulations

~ show that
_ relativistic
.. Jetsare

entirely
magnetically

0 connected
_______________________________________________________________________________________________________________________________________________________________________________ ) to the BH
horizon

(Tchekhoskoy
etal. 2011).
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o n ~ 1.3 for geometrically thick accretion flows
= M2 n ~ 0.5 for thin accretion disks (Liska et al. 2019)
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recent studies of the Blandford-Znajek mechanism

e GRPIC simulations (with plasma
represented by individual particles) Parfrey et al. (2019)
show how the vacuum (Wald) solution TTTTTTTT
connects to the BH horizon once
plasma is seeded volumetrically

(Parfrey et al. 2019).

e The BZ mechanism has been recently oo
questioned on the ground that BHs
should collect charge, leveling ~05

electrostatic potentials
(King & Pringle 2021). -1.0

e However, it has been argued that even rched fines: Wald solut
Charge_d BHSs produce eIeCtrOStat_iC sc?l?d?inelg:e:L.Jm:riczlosglﬁ?o(r:/ic;uplf;)ma
potentials, hence the BZ mechanism color: toroidal magnetic field strength
is viable (Kowmissarov 2021).
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(2) acceleration and collimation



acceleration with weak collimation

Relativistic MHD:
finite 6 = B%/4nw.

Stationary
relativistically

magnetized (0 > 1)
outflows accelerate to
relativistic Lorentz

factors (I' > 1).

Energy and mass
conservations
(Bernoulli/Michel):

I'(1 + 0) = const.

Momentum
conservation:

- the hard part.
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acceleration with strong collimation

100 44} f

e Simulations within
rigid wall boundaries
Imitate external
pressure profiles.

BT

-4 .5 -3 -2.5 -2
field lines

® narrow opening
angle: 0 < 1/T

(AGN).
log(T'p") [ Kowmissarov et al. (2007)
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resolving the colllmahon zone

- VLBA t43 GH

1o5

e MERLIN at 1.6 GHz

Asada
1 & Nakawmura
1(2012)
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 VLBI observations show parabolic inner jets
transitioning to conical.

* In some cases (e.g., M87) the transition is
roughly at the Bondi radius.




(3) stability



iet of M87: radio

Intensity [mJy/beam]

F — _
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* doubly helical jet structure at  Fractiona potarizatior
sub-kpc scale in radio

intensity, polarization and ’
Faraday rotation
Pasetto et al. (2021) I
JVLA at 4-18 GHz ohserver By observer
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instabilities of jets with
toroidal magnetic fields

» toroidal magnetic field supported by gas
pressure is unstable

(Kruskal & Schwarzschild 1954)

o magnetic fields in expanding jets become
increasingly toroidal

B, R~ B, x R~

* instability can be driven by poloidal
current or by gas pressure, depending on
the force balance

o instability grows sufficiently rapidly to o
affect the jet dynamics and to enable Mizuno et al. (2011)

dissipation by magnetic reconnection
(Mol 2009) (Giannios & Spruit 20006)

| l
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instability growth depends on jet structure

* A simple 1D model of
magnetized relativistic jets

suggests that B, < BI’) up to

104Rg (Zdziarski et al.,
arXiv:220411637).

100

B [G]

e Current-driven kink mode
amplitude £’ in the jet co-

0.01-
| N moving frame grows rapidly
(b) for B, > B/ (toroidal
10 100 1000 10" 10°  10° component of B’ dominates

z/rg the poloidal component).



(4) energy dissipation



beyond magnetically dominated jets

0. Meier
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» As the jets become relativistically fast, the convert from being dominated by magnetic
energy (Poynting flux) to being dominated by kinetic energy (inertia).

» As the magnetic fields become weak, they may be subject to instabilities disrupting the
ordered structure and leading to turbulent motions, making the fields chaotic.

» Dissipation of ordered energy (kinetic by shocks, magnetic by reconnection) leads to
non-thermal particle acceleration and blazar emission.

» Whether shocks or reconnection, emitting regions close to equipartition, can be very
different from the background (Sironi, Petropoulov & Giannios 20139).
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clues for turbulence in jets

# MAGIC
1.0 & FacT == -
# FERMI-LAT
# Swift-BAT
#  Swift-XRT
0.8 # Swift-UVOT/UVW1 i b
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S
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(5) particle acceleration



particle acceleration at collisionless shocks

Spitkovsky (2008)
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In low-density plasma where
particle collisions can be
neglected, shock waves develop
complex structures on kinetic
scales.

Lucky particles can be
accelerated when crossing the
shock multiple times (diffusive
shock acceleration, a first-order
Fermi process).

Maximum particle energy Is
strongly limited by plasma

magnetization ¢ = B*/4zw.



hard particle spectra in relativistic reconnection

Lakhina (2000)

* Reconnection produces power-law
distributions that are hardening with
iIncreasing sigma
dN/dy « y™P with p — 1 for
o> 1

(Sironi & Spitkovsky 2014 Guo ef al.
2014 Werner et al. 2016, Zhang et al.
2021).

 High-energy cut-off is exponential
with 7.« ~ O(0).




kinetic simulations of instabilities
in cylindrical jets with toroidal magnetic fields

gas pressure balanced axial magnetic field balanced
(Z-pinch) (force-free screw-pinch)

-0.4 -0.2 0.0 0.2 0.4

2000 4000 6000 8000 1000
EZ [Bo] Lorentz factor

Alves, Zrake & Fivza (2018) Davelaar, Philippov, Bromberg & Singh (2020)
efficient particle acceleration found in both cases
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kinetic simulations of instabilities in
cylindrical jets with toroidal magnetic fields

qu flux dissipation particle acceleration

B(b ﬂUX aB(Zﬁ_ -1 ,Ymax/@() aBé_ -1

fast magnetic dissipation and particle
acceleration by E L B until the confinement
limit y;. = eByR,/mc” (Alves et al. 2018)

José Ortuino-Macias, KN, 0. Uzdensky, M. Begelman, 6. Werner, A. Chen, B. Mishra (ApJ in press)
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(6) radiative processes



spectral energy distributions of blazars
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blazars (AGN with a relativistic jet at
small viewing angle) are dominated by
non-thermal SEDs extending from radio
to gamma rays

blazar SEDs consist of two major
components that follow an observational
‘sequence’ (anti-correlation between
peak frequency and peak luminosity)

high-luminosity blazars are known as
FSRQs (flat spectrum radio quasars),
low-luminosity ones are called BL Lac
objects

the low-energy SED component is
synchrotron emission, the high-energy
SED component may be due to leptonic
(inverse Compton) or hadronic processes



radiative environment of quasar jets
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neutrinos from blazars

* neutrinos of ~PeV energy are detected

original GCN Notice Fri 22 Sep 17 20:55:13 UT 10
refined best-fit direction IC170922A . .
T 10170822 50% - area: 016 square degrees 19 by observatories like lceCube
— o - area: 0.97 square degrees s
17 2
. . ¢ * single neutrinos have been associated
E R 5 & with several blazars, e.g., IC170922A
: ¢ 3 with TXS 05064056 (supported by an
z g excess of lower-energy events in 2015)
PK80502+O4Q 1
0 e further associations: PKS 1502+106

BT ertascenaon 8 (2019), 3HSP J095507.9+35510

leeCube Collaboration et al. (2018a,b) (2020), etc.
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hadronic radiative processes

Oerru’ﬂ ef al. (2019)
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(a) Proton synchrotron modeling of TXS 05064056
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(b) Lepto-hadronic modeling of TXS 05064056

e protons may be accelerated to

ultra-high energies (up to 10?" eV)
in AGN jets

~PeV protons may produce ~TeV
photons through photo-mesonic
cascades (pions, neutrinos, etc.) or
In the proton synchrotron process

hadronic processes are generally
less efficient than leptonic
processes (Sikora et al. 2009), often
requiring super-Eddington jet
powers (Zdziarski & Bottcher 2015)



(7) plasma composition



electron-positron pairs

Pjanka et al. (2017)
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radio-lobe jet power

Py~ P./10
100 kpc-scale jet power a small
fraction of the pc-scale jet power:
- intermittency at pc scales;

- abundant pairs at pc scales,

radiating their energy by kpc scales.

* electron-positron pairs may be
abundant in relativistic jets,
~20 leptons per proton

(Sikora et al. 2020)
(cf. the talk of R. Anantua)

e evidence: energetics of radio

lobes, pc-scale jet powers
(modeling blazar SEDs, radio
core shifts)

* however, no pairs inferred by,

e.g., Ghisellini et al. (2014)



(8) origin of matter



loading with pairs

Barkov & Komissarov (2008)
“f/ A * photon-photon pair production from soft

ﬂK

0 I s N S gamma-ray (~MeV) emission of accretion
AN j\ V.. disk coronae; efficiency uncertain due to
- \\ \ / { ' poor data on MeV spectra of AGN

> 4 (Slkora et al. 2020)

z/rg

o '/ i § ’
A% ///ﬁ\“\i\ YN s

0Tl / A D S produced in the inner jet interacting with

low-energy radiation
(Blandford & Levinson 1995)

e or pair production by 2GeV gamma rays

Gondek et al. "996) * or cascades produced by particles

accelerated in magnetospheric gaps
(Broderick & Tehekhovskoy 2015)

* volumetric process providing uniform
particle density (KN 2016)
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loading with protons

Chatterjee et al (2019)
t= 2 X 1O5t 0

T —9 " Crab PWN (HST)
100 200 logyyp
/1

protons must be
advected from the jet
environment

proton loading may
proceed through
instabilities, e.qg.,
interchange (magnetic
Rayleigh-Taylor)

flamentary loading may
lead to highly non-uniform
particle density (KN 2016)
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1. Relativistic jets are most likely launched from spinning black holes with poloidal magnetic flux in the
Blandford-Znajek mechanism.

2. Jets are accelerated to relativistic speeds by pressure of toroidal magnetic fields, converting initially
relativistic magnetization. Acceleration distance scale can be reduced to ~ 103Rg due to jet collimation by

external pressure.

3. Jets are remarkably stable globally to kpc scales, yet the can be unstable locally to current- and
pressure-driven modes.

4. Energy dissipation may proceed by collisionless shocks in matter-dominated regions or by magnetic
reconnection in magnetically dominated regions, most likely involving turbulence.

5. Particle acceleration mechanism is closely related to the dissipation process, if limited by radiative
cooling, it is a rather slow process (energy diffusion or second-order Fermi).

6. Radiative processes are still debated for the high-energy emission. Leptonic processes (inverse Compton
scattering of synchrotron or external radiation) are favored due to lower energetic requirements.
Hadronic processes (photo-mesonic cascades or proton synchrotron) are now motivated by associations
of PeV neutrinos with a few blazars.

7. Jet plasma is most likely composed of protons and electron-positron pairs, with n./n, ~ 20.

8. The magnetized jets must be loaded by matter. Leptonic pairs can be seeded across the jets by external
soft gamma rays. Protons must be introduced by contact instabilities (e.g., interchange).
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