
EBERHARD KARLS UNIVERSITÄT TÜBINGEN

Mathematisch-Naturwissenschaftliche Fakultät

Institute of Astronomy and Astrophysics

The eXTP mission

Andrea Santangelo* IAAT Kepler Center, University of Tübingen

GROWING BLACK HOLES: ACCRETION AND MERGERS, 15 – 20 May 2022, Kathmandu, Nepal

News and Views

New ideas

New technology

By Sergio Colafrancesco

"Land" is Baden-Württemberg, Capital Stuttgart

Population 10.6 Million Area about 36,000 km² According to an article on BBC travel: 'Tübingen: Europe's fiercely vegan, fairy-tale city'

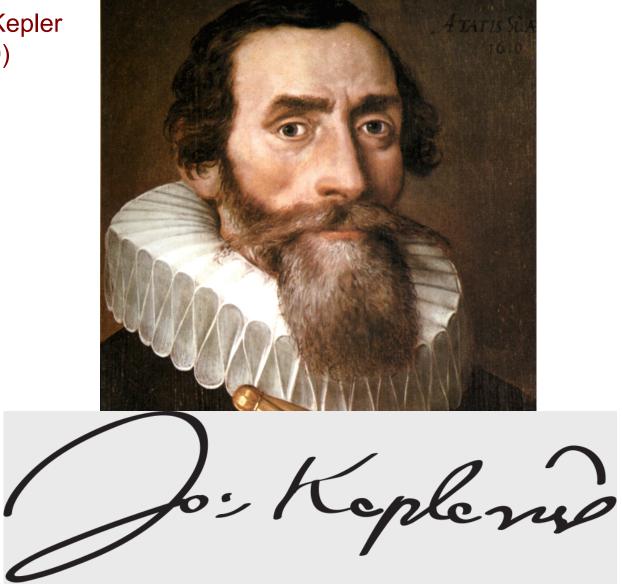
11 11 18 IR IR IR

11

IM III II

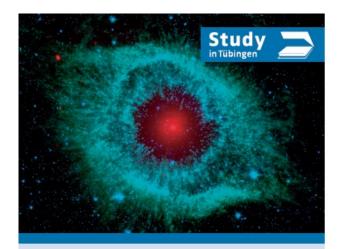
I

ĦĦ


FFF

THE

Perhaps Tübingen's most famous student


Johannes Kepler (1571-1630)

Master in Astro and Particle Physics

Astro and particle Physics

Master of Science

FACULTY OF SCIENCE Department of Physics

Basic Research in Astro and Particle Physics (Semest	er 1+2)
Astronomy & Astrophysics	9 CP
Particle Physics	9 CP
Laboratory Work	6 CP
Modern Topics	6 CP
Specialisation Modules (Semester 1+2)*	∑ 24 CP
Theoretical Astrophysics	6 CP
Computational Methods	6 CP
Stellar Physics	6 CP
General Relativity	6 CP
Relativistic Astrophysics	6 CP
Neutrino Physics	6 CP
High Energy Astrophysics	6 CP
Cosmology	6 CP
Extragalactic Astrophysics	6 CP
Space Physics and Astrophysics	6 CP
Quantum Field Theory	6 CP
Neighboring Field (Semester 2)**	
Module of neighboring field	6 CP
Scientific Work (Semester 3+4)	
Methods and project planning	15 CP
Scientific specialisation in Thesis topic	15 CP
Master Thesis	30 CP

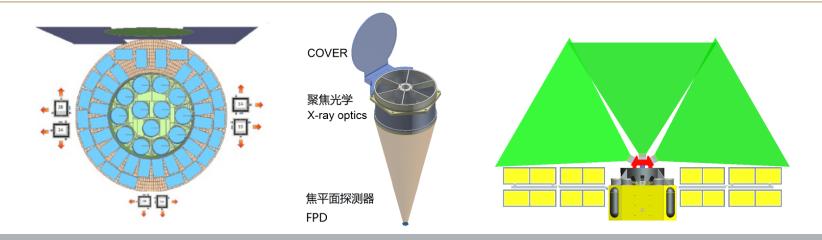
CP: Credit Points

Managed by the Kepler Center for Astro and Particle Physics, Tübingen

International Master, around 25-30 new students every year

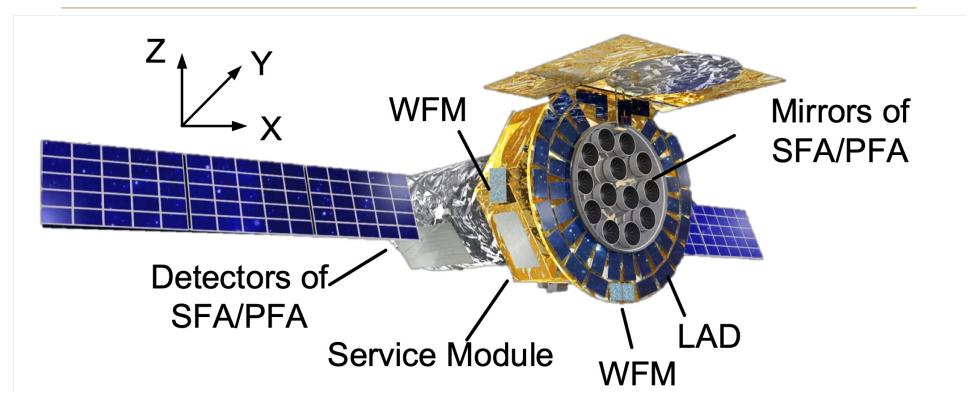
eXTP

The enhanced X-ray Timing and Polarimetry Mission (an update)


S.N. Zhang, A. Santangelo, M. Feroci, F. Lu, et al Sci. China-Phys. Mech. Astron (2019)

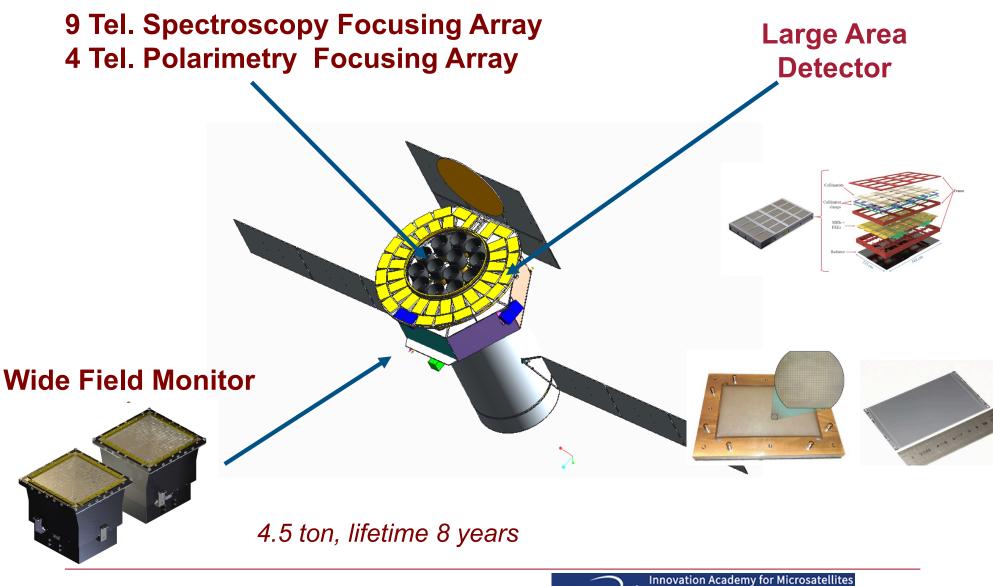
eXTP is an X-ray mission which aims at reaching unprecedent photon throughput with good angular and very good energy resolution. The mission will also host an X-ray Polarimeter.

- eXTP The science payload and the mission
- eXTP The science case
- Conclusions

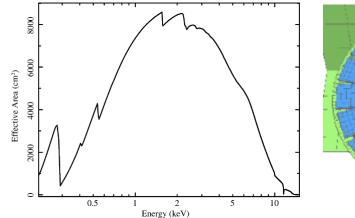


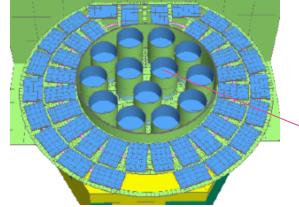
Part I

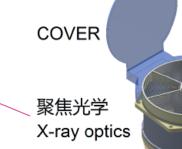
Mission and Instruments



To be launched in a low-earth orbit at an **altitude of ≤570 km**. The **inclination of the orbit is ≤2.5 deg** (to minimize background).

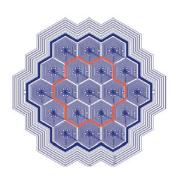

Baseline Launcher is the **Chinese Long March-5 (CZ-5)** vehicle. Nominal **science operations will last for 5 years**.

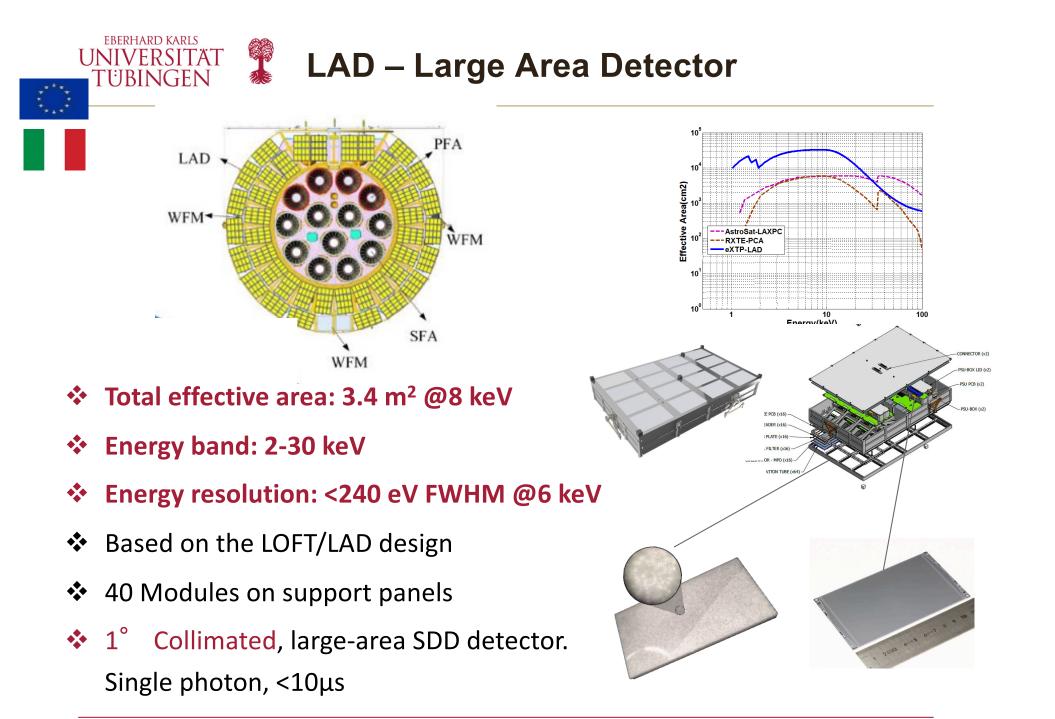

Excellent collaboration with Microsat


SFA – Spectroscopy Focusing Array

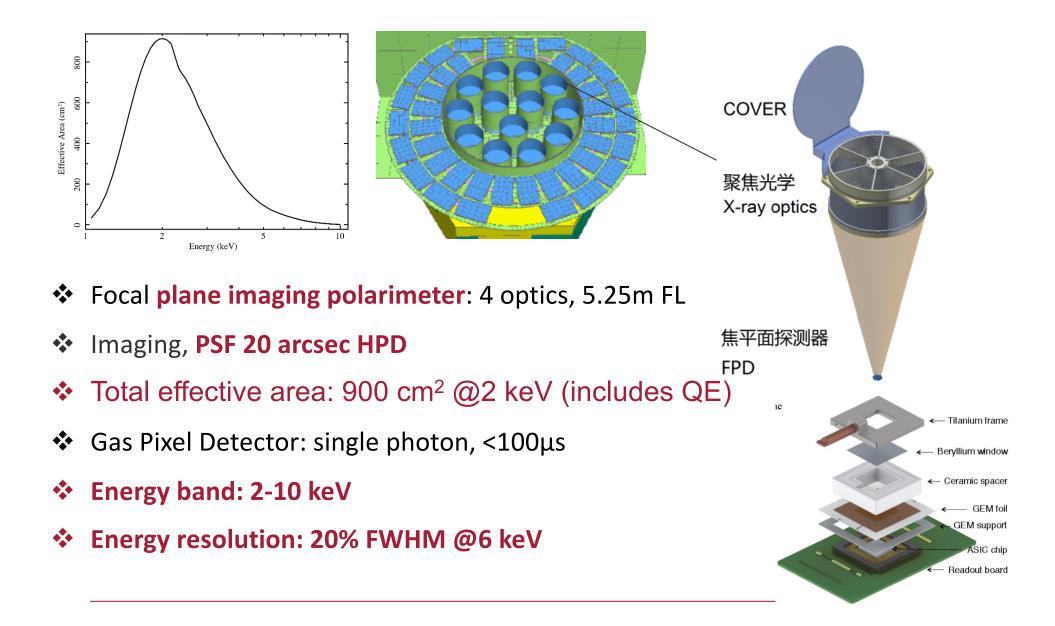
EBERHARD KARLS

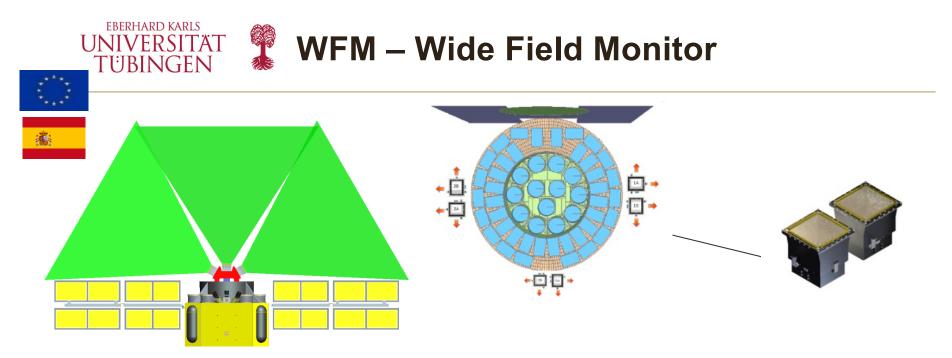
UNIVERSITÄT I TÜBINGEN

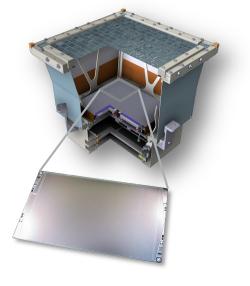


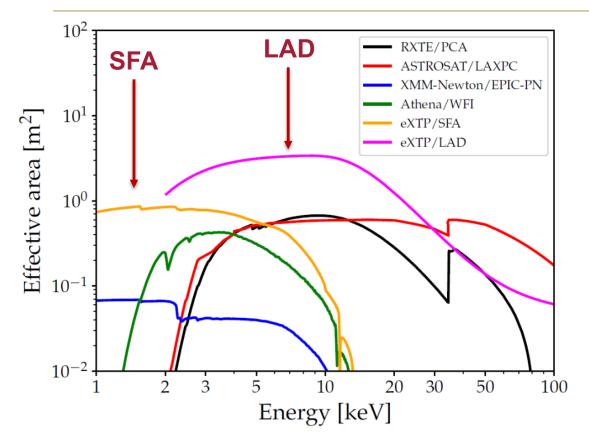


焦平面探测器


FPD


- Large collecting area achieved by multiple optics with short focal length. Baseline: 9 optics with 5.25m FL
- Total effective area: >0.7 m² @1 keV, 0.5 m² @6 keV
- ✤ Non-imaging, PSF requirement 1 arcmin HPD, 12' FoV
- Multi-pixel SDD detector (to enable background subtraction). Single photon timing <100µs</p>
- Energy band: 0.5-10 keV
- Energy resolution: <180 eV FWHM @6 keV</p>



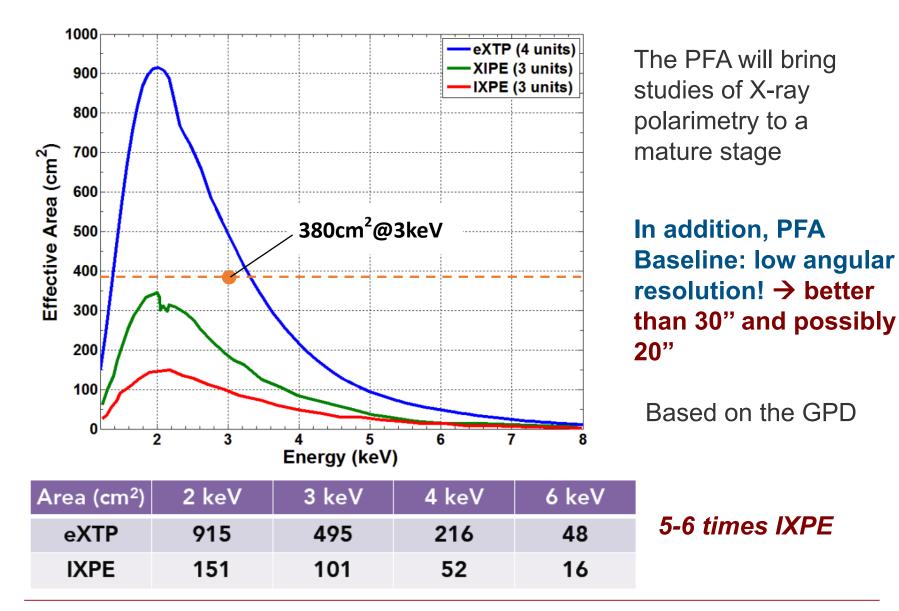

- Field of View: 4 steradian (at 20% response)
- Imaging, <5 arcmin angular resolution, 1 arcmin PSLA</p>
- Energy band: 2-50 keV
- Energy resolution: 300 eV FWHM @6 keV
- Effective area: 80 cm² @6 keV (1 unit, on axis)
- Same detectors as LAD (SDD). Single photon, <10μs
- ✤ 3 Units (6 Cameras)

PSLA: Point source location accuracy

SFA and LAD effective area

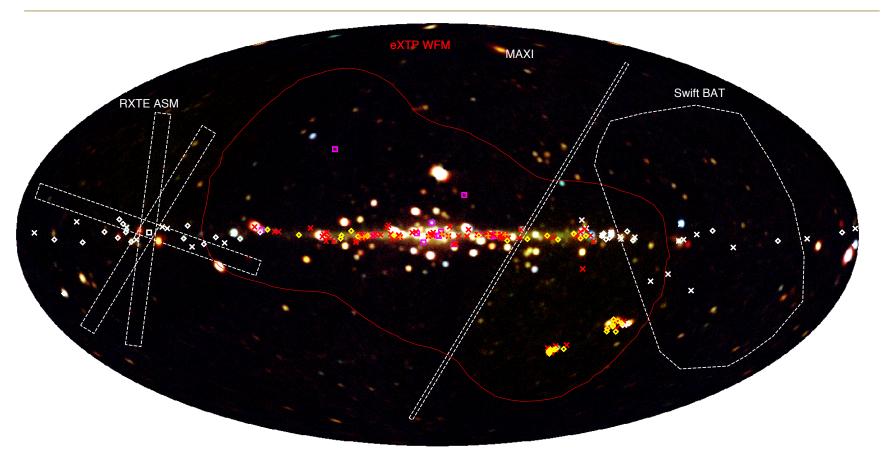
SFA: a 'factory' for soft photons, ready to operate in 2027.

LAD: a transformational instrument of exceptionally high photon throughput in the 2-30 keV range ready to operate in 2027.


LAD: 6x RXTE/PCA, 35x XMM-Newton (*but collimated*!) + hard-X response

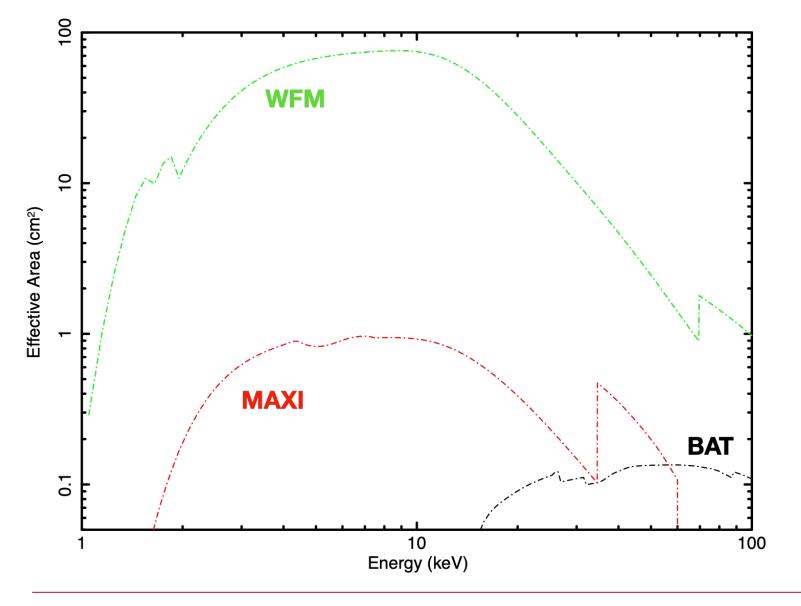
SFA: 8x XMM-Newton and 0.3-2x Athena/WFI (but multiple optics and larger PSF!). Limiting sensitivity ~10⁻¹⁴-10⁻¹⁵ erg cm⁻² s⁻¹

Transformational payload for spectral-timing studies of bright sources!



PFA a game changer in polarimetry

Dashed line current requirement, lower than the expected performance



WFM: Largest FoV ever, first time with 300 eV resolution. 3 mCrab in 50ks

Field of View: >4 steradian (at 20% of peak response)

WFM will continuously monitor a large fraction of Galactic XRB population

Large effective area + long exposures = science with WFM alone

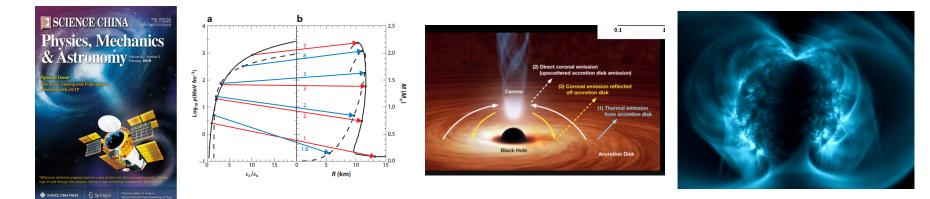
Table 1.1: The instrument configuration and key specifications					
Instrument	SFA	LAD	PFA	WFM	
Configuration	9 telescopes	40 modules	4 telescopes	6 cameras	
Optics or	Wolter-I, Nickel	capillary-plate	Wolter-I, Nickel	Coded mask	
Collimator	F = 5.25 m	collimators	F = 5.25 m		
Detector	19-pixel Silicon Drift Det. (SDD)	SDD	Gas Pixel Detector (GPD)	SDD	
Energy range	0.5 – 10 keV	2-30 keV	2-8 keV	2-50 keV	
Effective area or FoV	≥0.6 m²@1-2 keV 0.4 m² @ 6 keV	$3.0~\mathrm{m^2}\mathrm{at}8~\mathrm{keV}$	500 cm² @ 2 keV 300 cm² @ 3 keV	FoV ≥ 3.1 sr	
Energy res. (FWHM)	180 eV @ 6 keV	260 eV @ 6 keV	25% @ 6 keV	≤500 eV@6 keV	
Time res.	10 µs	10 µs	10 µs	10 µs	
Remarks	unprecedented	high throughput;	~ 5 times the area of	peak sensitivity:	
	effective area in	effective area is	IXPE, X-ray polar.	1 Crab in 1s and	
	the soft X-ray	a factor of 5-10	Pathfinder by NASA;	5 mCrab in 50	
	energy range	larger than any	Min. Detectable	ks (5σ source);	
		previous mission	Polarization $\sim 3\%$ in	Point source	
			2-8 keV range	localization $\leq 1'$	

T-1.1. 4 4 Th - 1.... C: 12 .

Most updated numbers as of March 2022.

Sky visibility

- >50% of the sky accessible by the narrow field instruments at any time (requirement) – current baseline: ~65% (-60° /+30°)
- ¼ of the sky instantaneously monitored by the WFM at any time


Transient events

- Onboard triggering and transient localization capability (WFM)
- Autonomous slewing (about 3° /min minimum speed)
- Transmission of coordinates to the ground: Bei Dou (<30s delay)

Targets of Opportunity

- Large allocation to ToO observations
- Fast uplink of ToO coordinates (Bei Dou)
- <12 hours execution time (requirement)</p>

Part II

The Science case

Science goals: Special Issue of Science China

- **Dense Matter**
- Strong Field Gravity
- Strong Magnetism •
- **Observatory Science**
- Instrument and mission •

Physics and astrophysics of strong magnetic field systems with eXTP

Andrea Santangelo^{1,2*}, Silvia Zane^{3*}, Hua Feng^{4*}, RenXin Xu^{5*}, Victor Doroshenko^{1*}, Enrico Bozzo⁶, Ilaria Caiazzo9, Francesco Coti Zelati7,17,20, Paolo Esposito17, Denis González-Caniulef3, Jeremy Hey19,

Daniela Huppenko Nanda Rea ^{16,17} , Cristina Baglio ²⁵ , Fe Ersin Göğüş ³² , Can Gi Romana Mikusir	SCIENCE CHINA Physics, Mechanics & Astronomy	CrossMark Cick for updates
	Invited Review Special Issue: The X-ray Timing and Polarimetry Frontier with eXTP	February 2019 Vol. 62 No. 2: 029502 https://doi.org/10.1007/s11433-018-9309-2
Andrea Tieng		

The enhanced X-ray Timing and Polarimetry mission—eXTP

ShuangNan Zhang1*, Andrea Santangelo1,2*, Marco Feroci3,4*, YuPeng Xu1*, FangJun Lu1, Yong Chen¹, Hua Feng⁵, Shu Zhang¹, Søren Brandt³⁶, Margarita Hernanz^{12,13}, Luca Baldini³³ Enrico Bozzo⁶, Riccardo Campana²³, Alessandra De Rosa³, YongWei Dong¹, Yuri Evangelista^{3,4}, Vladimir Karas⁸, Norbert Meidinger¹⁶, Aline Meuris¹⁰, Kirpal Nandra¹⁶, Teng Pan²¹, Giovanni Pareschi³¹, Piotr Orleanski37, QiuShi Huang22, Stephane Schanne10, Giorgia Sironi31, Daniele Spiga31 Jiri Svoboda⁸, Gianpiero Tagliaferri³¹, Christoph Tenzer², Andrea Vacchi^{25,26}, Silvia Zane¹⁴, Drew Weiter 14.7 to S_{1} and W_{2} , W_{2} and W_{2} and

Andrea Santangelo, editor, 2019

Observatory science with eXTP

SCIENCE CHINA

Physics, Mechanics & Astronomy

February 2019 Vol. 62 No. 2: 02950

esco Longo76,

Jean J. M. in 't Zand1", Enrico Bozzo2, JinLu Qu3, Xiang-Dong Li4, Lorenzo Amati5, Yang Chen4, Immacolata Donnarumma67, Victor Doroshenko8, Stephen A. Drake9, Margarita Hernanz10 Peter A, Jenke¹¹, Thomas J, Maccarone¹², Simin Mahmoodifar⁹, Domitilla de Martino¹³ Alessandra De Rosa⁷, Elena M. Rossi¹⁴, Antonia Rowlinson^{15,16}, Gloria Sala¹⁷, Giulia Stratta¹⁸, Thomas M. Tauris¹⁹, Joern Wilms²⁰, XueFeng Wu²¹, Ping Zhou^{15,4}, Iván Agudo²², Diego Altamirano² Jean-Luc Atteia²⁴, Nils A, Andersson²⁵, M, Cristina Baglio²⁶, David R, Ballantyne²⁷, Altan Baykal²⁸ Ehud Behar²⁹, Tomaso Belloni³⁰, Sudip Bhattacharyya³¹, Stefano Bianchi³², Anna Bilous¹⁵, Pere Blay³³ João Braga³⁴, Søren Brandt³⁵, Edward F. Brown³⁶, Niccolò Bucciantini³⁷, Luciano Burderi³⁸ Edward M. Cackett³⁹, Riccardo Campana⁵, Sergio Campana³⁰, Piergiorgio Casella⁴⁰, Yuri Cavecchi^{41,24}

Frank Chambers¹⁵, Liang Chen⁴², Yu-Peng Chen³, Jérôme Chenevez³⁵, Maria Chernyakova⁴³, ChiChuan Jin44, Riccardo Ciolfi45.46, Elisa Costantini1.15, Andrew Cumming47, Antonino D'Al48, Zi-Gao Dai⁴, Filippo D'Ammando⁴⁹, Massimiliano De Pasquale⁵⁰, Nathalie Degenaar¹⁵ Melania Del Santo⁴⁸, Valerio D'Elia⁴⁰, Tiziana Di Salvo⁵¹, Gerry Doyle⁵², Maurizio Falanga⁵³ XiLong Fan^{54,55} Robert D. Ferdman⁵⁶ Marco Feroci⁷, Federico Fraschetti⁵⁷, Duncan K. Gallowav⁵⁸ Angelo F. Gambino⁵¹, Poshak Gandhi⁵⁹, MingYu Ge³, Bruce Gendre⁶⁰, Ramandeep Gill⁶¹, Diego Götz⁶² Christian Gouiffes62, Paola Grandi5, Jonathan Granot61, Manuel Güdel63, Alexander Heger58,64,121,

Craig O. Heinke⁶⁵, Jeroen Homan^{66,1}, Rosario Iaria⁵¹, Kazushi Iwasawa⁶⁷, Luca Izzo⁶⁸, Long Ji⁸, Peter G. Jonker^{1,69}, Jordi José¹⁷, Jelle S. Kaastra¹, Emrah Kalemci⁷⁰, Oleg Kargaltsev⁷

Nohusuki Kawai⁷² Laurane Kaak⁷³ Stafania Komocca¹⁹ Ingo Krawkanbohm²⁰, Lucien Kuiper¹

CrossMark

eXTP is a machine to study the **extreme of physics**: understanding the behavior of matter and light under **extreme conditions of density**, **gravity and magnetism**:

Dense Matter: which is the state of matter at supranuclear densities (i.e., in the neutron star's interior)? Exotic states of matter? Quark stars?

Strong Gravity: what are the properties of space-time under extreme gravity (i.e., in the vicinity of neutron stars and black holes)? Any deviations from Einstein's General Relativity theory?

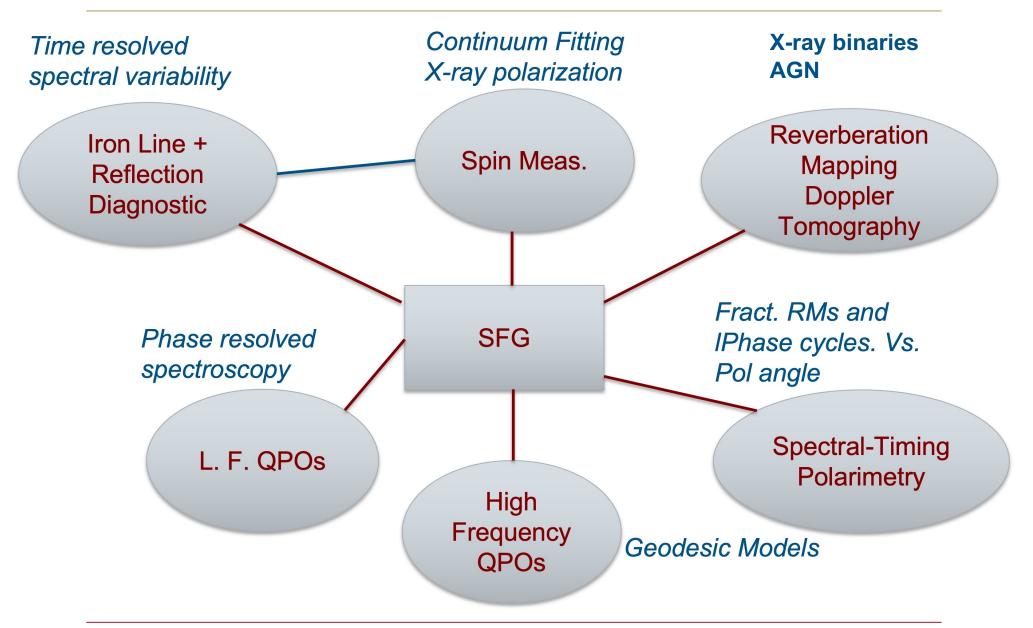
Strong Magnetism: which is the behavior of light in the presence of ultra-strong magnetic fields (e.g., in magnetars)? Are the predictions of the QED theory verified?

Physics with the astrophysics of bright sources.



Terrestrial Gamma-ray Flashes Stellar flares Cataclysmic variables LMXBs **HMXBs** Accretion and ejection Thermonuclear flashes on neutron stars Pulsars Tidal disruption events Flares on AGN and Blazars Gamma-ray bursts Supernova remnants **Galactic Center** eXTP synergy with other messengers: Gravitational Waves, TeV, neutrinos

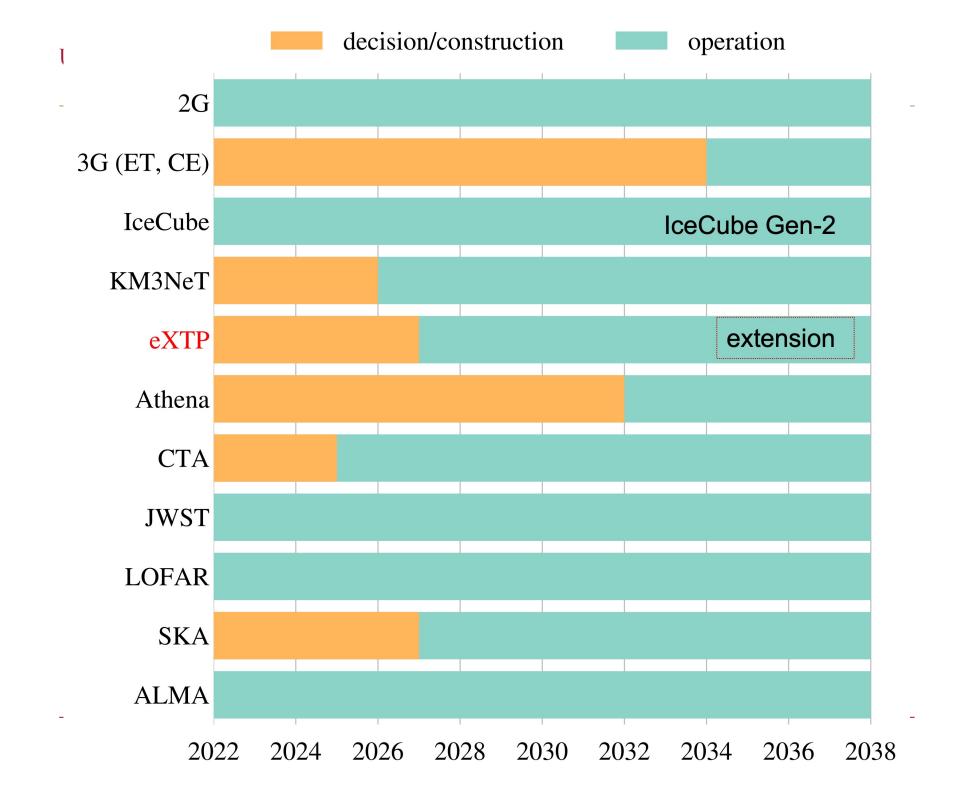
Observatory science


Dense matter (DM): synopsis

A. L. Watts, W. Yu, J. Poutanen, S. Zhang, et al Sci. China-Phys. Mech. Astron (2019)

Strong Field Gravity

De Rosa, Uttley et al., Sci. China-Phys. Mech. Astron (2019)


Goal: Measure black hole masses to a precision of 6% or better and spins to a precision of 5% and test the strong field gravity effects on the inner accretion flows, as they change significantly in structure and accretion rate.

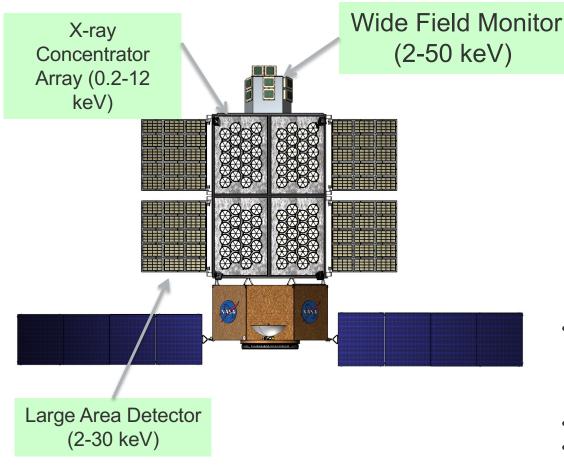
Continuum fitting method to measure disk inner radius (in km) (accuracy 3%), and **polarimetric measurement** to yield a BH mass estimate to 5% accuracy (SFG1.1);

Reflection spectroscopy and polarimetry to measure disk inner radius to a precision of 2% (SFG1.2);

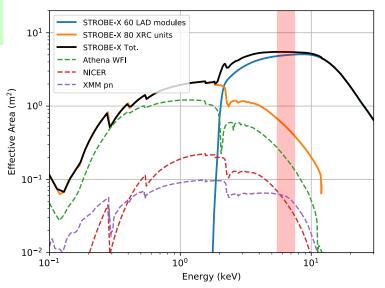
X-ray reverberation to measure the disk inner radius (in km), to a precision of 5% (SFG1.3) and with SFG1.2 to yield a BH mass to a precision of 6%;

polarimetric and spectral-timing polarimetric measurements to confirm the coronal geometry, use **disk reflection tomography** to confirm that the azimuthal pattern of relativistic effects is consistent with the disk inner radius inferred from SFG1.2, assuming GR (SFG1.4).

The Extreme transient sky


Key WFM Features:

- Arcmin localization allows optical follow up with single pointing
- Large instantaneous FOV probes rare events
- Autonomous repointing of pointed instruments and fast response to ground TOOs
- 300 eV resolution sensitive to lines and absorption features


Not only eXTP on the International scene...

Strobe-X a NASA's Probe mission candidate

Large effective area >5 m² @ 6 keV

- STROBE-X combines the strengths of NICER and LOFT: High throughput X-ray spectral timing with good powerful sky monitor
- All components are already high TRL
- Highly modular design improves reliability at reduced cost and allows easy scaling.

- The science potential of a **spectral-timing-polarimetry mission is enormous.**
- eXTP is an X-ray mission which aims at reaching unprecedent throughput with good angular and very good energy resolution. The mission hosts an Xray Polarimeter. This unique combination enables simultaneous spectraltiming-polarimetry analysis (e.g., QPOs phase resolved polarimetry).
- Thanks to its WFM, eXTP will be essential for multi-messenger studies
- The mission **is currently in its phase B.** In China, the SRR has been passed and they are moving toward the PDR. Try to reach adoption at beginning of next year.
- The European Instruments SRR is on its way.
- Technically there are no major issues...

Stay Tuned for surprises!

Thank you.

Contact:

Andrea Santangelo

Abteilung Hochenergieastrophysik Sand 1, 72076 Tübingen · Germany Phone: +49 7071 29-76128 Andrea.Santangelo@uni-tuebingen.de